Учёные заставили прозрачные материалы поглощать свет
Рис. 1. Схематичное изображение процесса виртуального поглощения: слой прозрачного материала освещается с двух сторон пучками света с нарастающей во времени интенсивностью. Изображение предоставлено авторами статьи.
Коллектив физиков из России, Швеции и США теоретически продемонстрировал крайне необычный оптический эффект: учёным удалось «виртуально» поглотить свет с помощью материала, который не обладает поглощением. Теоретическая находка авторов открывает новые пути к созданию элементов памяти для света. Работаопубликована в журнале Optica
Поглощение электромагнитного излучения, в том числе света, является одним из основных электромагнитных эффектов. Он связан с превращением электромагнитной энергии внутри непрозрачного материала в тепло или другие виды энергии (например, при возбуждении электронов). Уголь, чёрная краска или массив углеродных нанотрубок, известный многим под названием Vantablack, выглядят чёрными потому, что в этих материалах энергия падающего света практически полностью поглощается. Другие же материалы, такие как стекло или кварц, не поглощают свет и потому выглядят прозрачными.
В своей теоретической работе учёным удалось нарушить это простое интуитивное представление о поглощающих материалах и заставить структуру из абсолютно прозрачного материала выглядеть идеально поглощающей. Чтобы обойти запрет на поглощение, учёные воспользовались особыми математическими свойствами матрицы рассеяния — функции, которая связывает падающее на систему и рассеянное ей электромагнитное поле. При падении на систему из прозрачного материала пучка света с постоянной во времени интенсивностью система рассеивает весь падающий свет вследствие отсутствия поглощения — это свойство матрицы рассеяния называется унитарностью. Оказалось, однако, что если особым образом менять во времени интенсивность падающего пучка, то унитарность может быть нарушена, по крайней мере на какое-то время. В частности, если увеличивать интенсивность падающего света по экспоненте, вся энергия падающего света будет копиться внутри прозрачного материала и не покидать его, как изображено на рис. 1. Снаружи при этом такая система будет выглядеть идеально поглощающей.
Рис. 2. Эффект виртуального поглощения в тонком слое прозрачного материала. Пунктирная линия показывает амплитуду падающей на слой волны в зависимости от времени, сплошная линия — амплитуду рассеянного сигнала, включающего в себя отражённую и прошедшую волны. До момента времени t = 0 рассеянный сигнал отсутствует, указывая на то, что вся энергия падающей волны идеально «запирается» в слое прозрачного материала. Изображение предоставлено авторами статьи.
Чтобы продемонстрировать описанный эффект, авторы рассмотрели тонкий слой прозрачного диэлектрика и рассчитали необходимый для виртуального поглощения профиль интенсивности падающего света. Численные расчёты подтвердили, что при экспоненциальном нарастании интенсивности падающей волны (показана пунктиром на рис. 2) прохождение и отражение от такого слоя полностью отсутствуют (сплошная кривая на рис. 2): иными словами, слой выглядит идеально поглощающим, несмотря на отсутствие фактического поглощения. Однако, когда экспоненциальное нарастание амплитуды падающей волны прекращается (момент времени t = 0), вся «запертая» внутри слоя энергия начинает покидать его.
«Теоретические результаты, полученные в этой работе, оказались очень контринтуитивными. Думаю, что никто из авторов до начала исследования не мог предположить, что с помощью прозрачной системы можно провернуть такой „фокус“, — комментирует открытие аспирант МФТИ, один из авторов работы, Денис Баранов. — Но сама математика подсказала нам дорогу к этому эффекту, и неизвестно, какие ещё необычные явления скрываются за ширмой простой электродинамики».
Результаты, продемонстрированные в этой работе, не только расширяют общие представления о том, каким образом может вести себя свет при взаимодействии с обыкновенными прозрачными материалами, но и открывают дорогу к интересным практическим приложениям. Например, такое накопление света в прозрачной системе может позволить разработать устройства оптической памяти, которые будут без потерь хранить оптическую информацию и высвобождать её в нужный момент времени.